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L iquid Crystals, 1998, Vol. 24, No. 1, 117 ± 125

Topological defects in dispersed liquid crystals, or words and

worlds around liquid crystal drops

by O. D. LAVRENTOVICH

Chemical Physics Interdisciplinary Program and Liquid Crystal Institute,
Kent State University, Kent, Ohio 44242, USA

Presented at the Capri Symposium in Honour of George W. Gray, FRS held at the
Hotel Palatium, Capri, 11± 14 September 1996

The structure of dispersed liquid crystal droplets is controlled by a balance of the bulk
elasticity, surface tension, and surface anchoring. For suYciently large droplets with radius
R >K /Wa , where K is the bulk elastic constant and Wa is the anchoring coeYcient, the surface
terms prevail. As a result, the equilibrium states of large droplets contain topologically stable
defects. Application of topological theorems to defect structures, e.g. monopoles, boojums
and hedgehogs is reviewed.

1. Introduction invention of polymer dispersed liquid crystals (PDLCs)
Thermotropic liquid crystals and dispersed-phase as a medium for electro-optical devices [4, 5] was a

systems are two ® elds of active research in soft matter spectacular manifestation of the unique properties of
science usually considered as independent. Recent years anisotropic dispersions. Two basic features, i.e. (1 ) the
have shown a growing interest in dispersions of liquid ordered inner structure of the dispersed particles and
crystals where the dispersed phase is a thermotropic (2) the small scale of con® nement in which bulk and
liquid crystal. surface interactions are in direct competition, make

Apparently, the ® rst liquid crystalline dispersions were liquid crystalline dispersions distinctive and more com-
prepared in the 1890s by Otto Lehmann [1] who mixed plex than their isotropic counterparts or continuous
para-azoxyanisole with diVerent ¯ uids such as Canadian liquid crystalline media.
balsam, colophony, mineral oil, etc. The aim was nothing The equilibrium states of liquid crystal dispersions often
other than to decipher the nature of the liquid crystalline contain topologically stable defects. Some of them are
order. Observations with a polarizing microscope revealed rather unusual, as, for example, monopoles in cholesteric
¯ oating spherical droplets with beautiful birefringent and smectic C droplets which are analogues of the Dirac
textures. Lehmann recognized that the birefringence was monopole, a hypothetical elementary magnetic charge.
caused by an ordered alignment of elongated èlementary The aim of this short review is to present basic structural
units’ (molecules) inside the droplets. In the simplest and topological properties of liquid crystal droplets and
model, the molecules were supposed to orient along the to recall some stimulating parallels with other ® elds
meridians at the droplet surface. Thus the substance of physics.
under study was really a l̀iquid crystal’: it formed
spherical droplets like a ¯ uid and at the same time 2. Basic properties of liquid crystal droplets
possessed an ordered structure like crystals. The equilibrium state of liquid crystal droplets, and

Lehmann’s ordered droplets were practically forgotten similar objects such as isotropic droplets or mono-
as soon as it became clear that liquid crystals did really domain solid crystals bounded by an isotropic medium,
exist as distinctive phases. Even in the 1930± 1970s, is de® ned by the minimum of the free energy functional
when Oparin and his followers developed ideas of the that can be formally decomposed into a volume and a
coacervate origin of life [2] and when biochemists studied surface part:
practically all the possible variations of dispersions to
create p̀rotocells’, liquid crystal droplets as plausible

F =FV+FS = PV
f dV + PS

s dS. (1 )p̀rotocells’ attracted little attention. Nevertheless, obser-
vations that some coacervate droplets are optically

Here V is the droplet’s volume, f the bulk free energyanisotropic have been reported [3].
density, S the area of the bounding surface and s theIt was not until the last decade that there came a true

revival of interest in liquid crystalline droplets. The surface free energy per unit area.
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118 O. D. Lavrentovich

For isotropic droplets , s is constant. If there is no the bulk, ® gure 1. For example, as shown by Williams
[8] for tangentially anchored droplets with a Rapini±exchange of molecules with the surrounding matrix (V is

constant), the equilibrium shape is found by minimizing Papoular anchoring potential, the minimum of the total
energy (FV+FS ) at R � 2 is the same as the minimumthe surface energy. The droplet adopts a spherical shape

of radius R = (3V /4p)1/3 . If the droplet nucleates during of the Frank± Oseen energy FV with the restriction that
n is strictly tangential to the surface.a ® rst-order phase transition, f should be understood

as the diVerence in free energy density between the With typical W a#10 Õ
5 J m Õ

2 and K # 10 Õ
11 N, the

characteristic anchoring length lW =K /W a is of the ordersurrounding matrix (vapour, metastable phase) and the
stable nucleating phase. Then the free energy (1) is of 1 mm and normally much larger than l

s
. Droplets

with R & lW are l̀arge’ and contain defects in equilibrium.de® ned by the bulk term Fv= 4
3p f R

3<0 and by the
surface term Fs=4psR

2>0. A spherical embryo larger A similar balance of surface and bulk energies in smectic A
droplets results in focal-conic defects of characteristicthan Rc=2s/ f grows inde® nitely since the bulk energy

gain ~R
3 outweighs the surface energy penalty ~R

2 . size r>K /W a that ® t the boundary conditions and thus
save surface energy ~r

2 at the expense of the elasticIn solid crystals, the bulk energy of distortions that
might be caused by the surface is prohibitively high and energy ~r [9]; the diVerence is that W a should be

understood as the surface energy diVerence for normalthe variational problem for equation (1) is solved under
the constraint that the crystal preserves its ideal lattice and tangential orientation. As discussed in the next

section, nematic droplets with R & lW can be describedstructure. The surface energy s depends on crystallo-
graphic orientation. This dependence can contain c̀usps’ on the basis of elementary topological properties of the

bounding surface.at which the ® rst derivative of s is discontinuous. The
cusps lead to a faceted shape of a crystal that can be
reconstructed through the well-known WulV procedure. 3. Elements of topological description of defects

For R & lW , the director of the interface makes anL iquid crystal droplets present the most diYcult case
of the minimization problem since, ® rst, s depends on equilibrium polar angle a0 with the surface normal k .

Even without solving the minimization problem, onethe surface orientation of the molecules and, second,
surface and bulk energies are often comparable. In can establish general and useful topological properties

of structures that occur inside these droplets as long asnematics, the amplitude W a of the angular dependent
part of s ( ànchoring energy’ ) is usually much smaller a0 is ® xed. This possibility stems from two theorems

of diVerential geometry, i.e. the Gauss and PoincareÂthan the energy s0 needed to extend the area of the
surface preserving the equilibrium director orientation. theorems. The theorems connect the total topological

charges of point defects in the vector ® eld to the so-calledTypical values for the liquid crystalline cyanobiphenyls±
glycerin pairs are s0~ ( 10 Õ

3 ± 10 Õ
2 ) J m Õ

2 [6] and Euler characteristics E of the bounding surface.
T opological charges play a key role in the classi® cationW a~ (10 Õ

6 ± 10 Õ
5 ) J m Õ

2 [7]. Surfactants such as
lecithin decrease s0 by an order of magnitude [7]. of defects in condensed media as shown by Toulouse

and KleÂ man [10] and Volovik and Mineev [11] on theRepresentative estimates are s0 R
2 for the isotropic

part of the surface energy, W a R
2 for the anisotropic basis of homotopy theory. The stability of the defect is

guaranteed by the conservation of its topological charge.surface energy, and, ® nally, KR for Fv , where
K ~10 Õ

11 N is the bulk elastic constant. Note that the The laws of conservation of such charges, analogously
to the laws of conservation of electric and other physicalbulk elastic energy scales linearly with R rather than as

R
3 . Thus, in contrast to nucleating drops, the surface charges, regulate the decay and merging of defects, their

creation, annihilation, and mutual transformation. Theenergies outweigh the bulk elastic energy for large R .
The ® rst consequence of the estimates above is well-known example of the topological charge is the Frank

that realistic liquid crystal droplets are practically
spherical: the length l

s
=K /s0 is usually of the order of

a molecular length.
The second consequence is that for a given pair liquid

crystal± isotropic ¯ uid matrix, the structure of the drop-
lets is greatly in¯ uenced by their size. Droplets with
R %K /W a avoid spatial variations of the director n and
set n (r)=const at the expense of violated boundary
conditions. In contrast, large droplets satisfy boundary

Figure 1. Schematic structures of nematic droplets with
conditions by aligning molecules along the easy normal anchoring. Large droplets with R &K /Wa contain
direction(s). Since the boundary of the droplet is curved, topological defects in equilibrium; in small droplets with

R % K /W a the director tends to be uniform.this anchoring eVect leads to the distorted director in
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119T opological defects in dispersed L C

index of a linear disclination. Similar characteristics can Note that in nematics, the sign of N is not de® ned: a
substitution of n with Õ n obviously changes the signbe introduced for point defects.

Analytically, the topological charge of a point defect of N in equation (4), but this substitution does not
change the nematic state. In the absence of topologicalin a t-dimensional vector ® eld (n1 , n2 , ¼ nt ) , n

2=1 is
de® ned as an integral (e.g. ref. [12]): disclinations one might consider the director n as a

vector.
T he Euler characteristic E of the closed surface is a

topological invariant that does not alter under smooth
deformations. A practical way to calculate E is to draw
a polygonal set at the surface and then calculate theN

(t)=
1

V PSt Õ 1 K n
1

¼ ¼ n
t

qn
1

qu
1 ¼ ¼

qn
t

qu
1

¼ ¼ ¼ ¼

qn
1

qu
t Õ

1 ¼ ¼
qn

t

qu
t Õ

1K du
1

¼ du
t Õ

1 ,
number V t of vertices, the number Ed of edges, and the
number Fc of faces:

E =V t Õ Ed +Fc. (7 )

As is easy to see, E does not depend on the particular(2)
choice of polygonal network; one always ® nds E =2 for

where u
1
, ¼ u

t Õ
1 are coordinates speci® ed on the

a sphere and E =0 for a torus. The Euler characteristic
sphere S t Õ

1 surrounding the defect, and a normalizing
can also be de® ned through the g̀enus’ g of the surface:

coeYcient V equals 4p for t =3 and 2p for t =2. For
E =2(1 Õ g ). The genus g is the number of handles one

the case of t =2, one has simply
has to attach to a sphere to transform it into the surface
under consideration. Obviously, any spherical surface is

N
(2) ; m =

1

2p Q A n
1 dn

2

dl
Õ n

2 dn
1

dl B dl=0, Ô 1, Ô 2, ¼ , assigned g =0; a torus has g =1; larger g ’s correspond
to pretzels with g holes.

(3) T he PoincareÂ theorem states that the sum of all charges
m of the vector ® eld t on the closed surface (a0 Þ 0) iswhere l is the natural parameter de® ned along the
equal to the Euler characteristic of the surface, e.g. 2 inloop enclosing the defect point. For a bounded three-
the case of a sphere:dimensional system, one can assign charges m to point

defects in the surface vector ® eld t =n Õ k (n ¯k ) which �
j

m j=E . (8 )
is the projection of the director onto the surface. The
number m shows how many times t rotates by the angle Figure 2 shows two possible defect con® gurations of a
2p when one moves once along a closed loop around director ® eld on a sphere.
the defect’s centre. T he Gauss theorem states that if the vector ® eld is

For point defects in three-dimensional vector ® elds, normal to the closed surface, a0=0, then the sum of the
equation (2 ) yields topological charges N of all point defects inside the

bounded volume is
N

(3) ; N =
1

4p R n Cqn

qu
Ö

qn

qv D du dv. (4 )
�

i
N i=E/2, (9 )

If the vector ® eld is parameterized as n (u , v) =
i.e. 1 in the case of a sphere. A trivial illustration would

{sin h cos Q; sin h sin Q; cos h}, with both the polar (h)
be a radial hedgehog located in the centre of a sphere.

and the azimuthal (Q) angles being functions of the
coordinates u and v speci® ed on a sphere S2 surrounding
the defect, then

N =
1

4p R A qh

qu

qQ

qv
Õ

qh

qv

qQ

qu B sin h du dv. (5 )

For example, for a radial hedgehog n = rÃ in spherical
coordinates,

N =
1

4p R sin u du dv=1. (6)

Figure 2. Possible con® gurations of the director ® eld on a
The number N shows how many times one meets all spherical surface with one m =2 (a) or two m =1 (b) point

possible orientations of the vector ® eld while moving singularities; topological charges obey the PoincareÂ
theorem (8).around a closed surface surrounding the point defect.
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120 O. D. Lavrentovich

4. Monopoles and boojums hedgehog in the l-® eld and point defect with m =2 in
the D ¾ and D ² ® elds. The possibility for line defects toThe Dirac monopole [13], an elementary magnetic

charge, is one of the most exciting illustrations of shrink into a surface point singularity in 3He-A was ® rst
recognized by Mermin [16]. Mermin called the pointthe topological theorems discussed above. Imagine a

radial point defect in the magnetic ® eld, B dr, and draw singularity b̀oojum’, inspired by Lewis Carroll’s T he
Hunting of the Snark . In the poem, anyone encounteringimaginary concentric spheres around the centre of this

h̀edgehog’ so that the magnetic ® eld is normal to these the imaginary creature `boojum’, softly and suddenly
vanished away, just as disclinations do in the examplespheres. Obviously, the magnetic hedgehog has a topo-

logical charge N =1. A vector-potential A that is normal above. The analogy is even deeper when one considers the
super¯ ow in 3He-A. We refer the reader willing to learnto B is tangential to the imaginary spheres. Then in

accordance with the PoincareÂ theorem, there must be more about boojums and their way into modern physics
to Mermin’s book [17] Boojums All the Way T hrough.at least one singularity in the vector-potential ® eld on

each sphere. These point singularities form a line, or Mermin boojums can be observed in biaxial nematic
liquid crystals where the order parameter is a triad ofDirac string, emerging from the centre of the charge.

Thus the Dirac monopole is a combination of a point orthogonal directors. Let n be the director that charac-
terizes both the uniaxial and the biaxial phases, and ldefect-hedgehog N =1 in the B- ® eld with the attached

semi-in® nite d̀isclination’ m =2 in the A-® eld. the director that appears only in the biaxial phase; l)n.
Suppose the matrix sets normal the orientation of n atMonopole defects similar to the Dirac monopole can

occur in condensed matter. Soon after OsheroV, the surface so that a point defect N =1 exists somewhere
in the bulk in accordance with the Gauss theorem.Richardson and Lee, see review [14], discovered the

super¯ uid 3He, Blaha [15] suggested that a monopole Director l that appears during the uniaxial± biaxial phase
transition is tangential to the spherical surface andcan be observed in 3He-A. Unlike 4He which is com-

posed of bosons, 3He atoms are fermions and should gives rise to a surface boojum that is simultaneously an
N =1 in n and an m =2 defect in l.pair to form a super¯ uid. However, in contrast to Cooper

pairs in superconductors, the angular momentum of the Is there any mechanism in liquid crystals that might
prevent a monopole from a decay into a boojum? Liquidatomic pair in 3He is non-zero. The order parameter of

the A phase is a triad of vectors ( l, D ¾ , D ² ) , where l is the crystals with layered structures such as cholesterics (Ch)
and smectics C (SmC) oVer such a stabilizing mechanism.quantization axis of the orbital angular momentum of

Cooper pairs; D ¾ and D ² are perpendicular to l. In Imagine, for example, a SmC droplet with concentric
spherical packing of layers. The normal n to the layersbounded volumes, l is always normal to the walls. Then

in a spherical vessel one can hope to ® nd a monopole: forms a radial hedgehog. Since the molecules are tilted
with respect to n, there is another vector ® eld t of thea radial point defect in the ® eld l should be accompanied

by disclinations in the D ¾ and D ² ® elds ( ® gures 2 and 3). projections of the long axes of the molecules. The ® eld
t is tangential to the SmC spherical layers and thusHowever, there is a way to reduce the energy of the

system by moving the l-hedgehog towards the surface, so should contain disclinations ( ® gure 2). In contrast to
the biaxial nematic case, these lines are stable: anyreducing the length of the linear disclinations ( ® gure 3).

The resulting surface singularity is simultaneously a attempt to make them shorter violates the equidistance
of the SmC layers [18, 19]. During the SmC± SmA phase
transition, the disclination lines disappear since the
vector ® eld t disappears. Figure 4 illustrates both isolated
radial point defects in SmA droplets and corresponding
monopoles in SmC droplets. Similarly, in Ch droplets,
the monopole might be stable if the pitch of the
cholesteric is much shorter than the droplet radius. The
monopole structure of cholesteric droplets has been
observed by Robinson and explained by Frank and
Price, see ref. [20].Figure 3. A monopole (a) and a boojum (c) in a spherical

vessel ® lled with super¯ uid 3He-A phase (cross-sections).
The monopole is a combination of a point defect N =1 5. Continuously de® ned topological characteristics
in the vector ® eld l (thin lines) that is normal to the Topological charges such as Burgers vector of dis-
boundary and a disclination line m =2 (thick wavy line) location or the strength of a disclination are quantum.
in the vector ® elds D ¾ and D ² tangential to the bounding

The quantum nature of these charges comes as a naturalsurface. The monopole is unstable and transforms into
consequence of the fact that the order parameter hasthe boojum (c): the disclination shrinks (b) into a point at

the surface. freedom to change without aVecting the thermodynamic
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121T opological defects in dispersed L C

Figure 4. Spherical droplets of
SmA (a) and SmC (c) liquid
crystals suspended in a glycerin±
lecithin matrix. The radius of
the droplets in the microphoto-
graphs is about 15 mm. SmA
droplets show hedgehog defects
in the director ® eld; the cores
of the hedgehogs are located in
the centres of the droplets.
When the sample is cooled
down and SmA transforms into
SmC, these isolated point
defects transform into mono-
poles: pairs of m =1 appear in
the ® eld t that describes the tilt
of the molecules within the
smectic layers. Con® guration of
t at the spherical surface is illus-
trated by ® gure 2 (b). Molecular
schemes (b) and (d ) show cross-
sections of the SmA and SmC
droplets, respectively.

potentials of the system [10, 11]. The manifold of corres- and changing the temperature of the sample [21]. The
droplet preserves the spherical shape since the aniso-ponding states is called the order parameter space. For
tropic part of the nematic surface energy is smallerexample, the director of a uniaxial nematic can take any
than the isotropic part, as already discussed. In theorientation in space; all these orientations are energetic-
initial state with tangential anchoring, the droplet inally identical if the nematic rotates as a whole. The order
equilibrium must contain two or one surface pointparameter space is then a sphere S2

/Z2 of a unit radius;
defects Ð boojums with the total topological chargeany two antipodal points on this sphere are identical
m =2. In the ® nal state, there should be no boojumssince the states n and Õ n are not distinguishable for the
(the director projection onto the surface vanishes), butnon-polar nematic phase. An example below illustrates
the interior should contain a hedgehog with a chargehow the concept of order parameter space leads to
N =1. Under a smooth change in the surface angle a0quantum topological charges.
from p/2 to 0, how do the boojums vanish and how doesThe director ® eld n (r) on any surface enclosing an
the hedgehog appear in their place? It is intuitively clearelementary hedgehog N =1 produces a mapping from
that the integer numbers m and N are not suYcient, andthe real space onto the order parameter space that
some continuously de® ned characteristics are needed tocompletely covers the sphere S2

/Z2 . In other words, by
describe smooth transformations of the director ® eld [21].

going once around the hedgehog one meets all the
Consider the behaviour of an isolated boojum at a

possible orientations of n. To destroy the hedgehog, one surface under changing boundary conditions ( ® gure 5).
has to make a hole in this cover, or, in other words, At a0=p/2, the boojum is characterized by the index
to melt the nematic in the real space along a line

m =1 of the projection ® eld t =n Õ k (n¯k). In the
terminating at the defect core; the process requires interior, the boojum represents just one half of a hedge-
energies much larger than the energy of the defect itself. hog. If one surrounds the boojum by a hemisphere c

 

A mapping of an N =2 hedgehog spans the sphere two with a unit radius, then the director marks all the points
times, etc. There is no way to get a stable hedgehog with of this hemisphere. One can assign to the boojum a b̀ulk’
a non-integral charge: the corresponding cover of the characteristic A =1/2, since the area of the hemisphere
sphere is incomplete and shrinks into a point which is 1/2 of that of a sphere. When a0 varies from p/2 to 0,
means that the director relaxes into a uniform state or the boojum either disappears [® gure 5 (a) ± (c)], or trans-
a state with an integral charge. forms into a hedgehog [® gure 5 (d ) ± ( f )]. Accordingly,

Now consider a nematic droplet. Suppose there is a A decreases to 0 or grows to 1. Quantitatively, A is
way to change continuously the boundary conditions de® ned as the integral (4) taken over the hemisphere cÄ :
on the surface of this droplet from, say, strictly tangential
to strictly normal. Experimentally, it can be done by A =

1

4p R c Ä
n Cqn

qu
Ö

qn

qv D du dv=
m

2
(n¯k Õ 1 ) +N .

dispersing a nematic liquid crystal in a matrix composed
of two components with opposite alignment tendencies (10)
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122 O. D. Lavrentovich

defects on its surface and q hedgehogs in its interior.
Some of the hedgehogs can be stretched out into dis-
clination rings; these rings, however, do not change the
analysis since they are topologically equivalent to
hedgehogs with integer charges N =0, Ô 1, Ô 2, ¼ .

We surround all the defects in the bulk by a sur-
face c1 and the entire surface of the droplet, together
with the boojums, by a surface c2 ( ® gure 6). The total
topological charge of the hedgehogs enclosed by c1 is
S i N i . The total charge enclosed by c2 is equal to the
sum of the boojums’ characteristics S j A j and the charac-
teristic of A s of the droplet surface itself, which diVers
from zero because of the curvature of the surface. Taking
the integral (5) over the drop surface with the boojums
punched out, one ® nds As=Õ n¯k . Now, since there are
no defects in between c1 and c2 , the two total topological
charges (taken with opposite signs) are equal to each
other,

�
p

b=1
Ab+As=Õ �

p+q

a=p+1
Na . (11)

The last equation is the conservation law for topo-
logical charges in the closed droplet when the boundary
conditions change. Some of the defects might vanish or
appear, but the total charge is preserved by redistribution
of A characteristics. It is easy to see that equation (11)Figure 5. Two possible ways of boojum transformation under
gives conservation laws for both types of discretelychanging boundary conditions. The scenario (a, b, c)
de® ned charges. Really, for a bounding surface with theresults in gradual disappearance of the defect, while

the scenario (d, e, f ) produces a point defect hedgehog. Euler characteristic E ,
The corresponding characteristics A are shown as the
shadowed areas on a sphere of the order parameter space

�
p

b=1
Ab+As+ �

p+q

a=p+1
Na=

1

2 A �
p

b=1
mb Õ EB (n¯k Õ 1 )below each boojum structure.

Here we treat n as a vector, rather than as a director, + �
p+q

a=1
Na Õ

1

2
E =0; (12)

which is justi® ed when there are no disclinations in the
nematic bulk.

therefore, S
p
b=1 mb=E (for any a0 Þ 0) and �

p+q

a=1
Na=E/2By using equation (10), one ® nds the topological

b̀ulk’ charge N of the boojum since m is de® ned These equalities are nothing other than theorems (8)
independently from the distribution of the projection and (9).
® eld. For example, consider axisymmetric boojums
with m =1 and m =Õ 1 located at the surface with a
® xed angle a0 . The director ® eld around a boojum
can be parameterized in cylindrical coordinates as
nr= sin h (u, v) , g

Q
=0, gz=cos h(u, v) , where h is the

angle between the vectors k and n. Then for these
boojums,

A =Ô
1

2 P sin h
qh

qu
du=Ô

1

2
(cos a0 Ô 1),

where the ® rst pair of signs is de® ned by the sign of m

and the second pair of signs is de® ned by the sign
Figure 6. To ® nd the conservation law for topological charges

of qh/qu. in the bounded volume, one uses two imaginary surfaces
Consider the role of continuous A’s in the behaviour (dashed lines) to surround all the defects in the bulk and

all the defects at the surface.of the drop as a whole. Assume that there are p point
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123T opological defects in dispersed L C

Relations above allow one to describe the t̀opo-
logical dynamics’ of defects in a nematic volume as
redistribution of the continuous A characteristics under
restrictions on the total charge and charges m , N .
DiVerent scenarios have been described in reference [21].
Basically, when the boundary conditions change and the
characteristics of some defects change, other defects in
the system should accordingly adjust their structure and
topological characteristics to satisfy the conservation
laws. Sometimes the process results in appearance of
new defects or disappearance of the initial ones. For
example, ® gure 7 illustrates the experimentally observed
[21] scenario in which the decrease of the polar angle
from a0=p/2 [® gure 7 (a)] to a0=0 [® gure 7 (e)] results
® rst in the appearance of the surface equatorial dis-
clination [® gure 7 (b)] and then in the disappearance of
two boojums at the poles [® gure 7 (c)]. After the boojums
vanish away, the disclination ring shrinks into a point
defect with N =1 [® gure 7 (d )] at the pole of the droplet.
This state is topologically equivalent to a radial hedge-
hog. The equivalence is manifested by the last stage of
the t̀opological dynamics’: the N =1 defect relocates
from the pole [® gure 7 (d )] to the centre of the drop
[® gure 7 (e)].

6. Phase ordering and stability of dispersions

Con® nement and anchoring create topological defects
in the equilibrium state of large (R >K /W a ) liquid
crystal droplets. Non-trivial topology of the liquid
crystal droplets might lead to a number of interesting
physical consequences. One example is phase ordering in
quenched systems, e.g. the transition from the isotropic
melt into the nematic phase caused by rapid temperature
decrease. The ® rst-order isotropic± nematic transition
occurs as nucleation of rounded nematic droplets
¯ oating in the isotropic sea. The conventional Kibble
mechanism [22] treats the appearance of topological
defects during the quenching as a result of coalescence

Figure 7. Topological dynamics of defects in nematicof domains Ð droplets with diVerent (but uniform
spherical droplets suspended in a glycerin± lecithin matrix.within each domain) orientation of the director. This
By changing the temperature of the sample, one changesscenario is certainly relevant for the initial stage of the the director orientation at the surface of the droplets from

coalescence. However, as the droplets grow, the seed strictly tangential (a) to strictly normal (e). Defects trans-
defects should show up as intrinsic singularities in each form to accommodate the changing boundary conditions

but always preserve the total topological charge. Thedroplet that reached the size ~K/W a .
process includes formation of equatorial disclination lineThere is yet another aspect that makes the structural
(b), gradual disappearance of boojums (b, c), shrinkage of

peculiarities of the droplets relevant to the problem the disclination into a surface point hedgehog (d ) and,
of coalescence. As demonstrated experimentally by ® nally, relocation of the hedgehog from the surface into
Terentjev [23], stability of nematic macroemulsions is the bulk (e). The radius of the largest droplet in the

microphotographs is about 20 mm. For more details, seegreatly enhanced compared with that of their isotropic
the text and reference [21].counterparts. The energy barrier for coalescence is

de® ned mainly by the elastic constants of the liquid
crystal and the surface tension (rather than by the
anchoring energy). At the initial stage of coalescence,
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124 O. D. Lavrentovich

the zone of contact of two droplets can be approximated During many years, liquid crystal structures have
by a disk of small radius a %R . The surface energy gain inspired hopes of gaining insight into the mechanisms
from the formation of such a contact area is ~s0a

2 of structural organization in biological systems (see the
(reduction in the total surface area of the two contacting book by Needham [25] and the review by Gray [26] ).
droplets is ~a

2 ) , while the elastic penalty of additional A remarkable comparison of biological and liquid crystal
distortions is at least of the order of ~Ka. Figure 8 structures has been presented by Brown and Wolken
illustrates two contacting droplets with normal boundary [27], and recent studies by Livolant [28] and by Van
conditions and a surface disclination ring of radius a and Winkle et al. [29] reveal that some chromosomes can
elastic energy ~Ka. Appearance of the ring is dictated be considered as strongly elongated cholesteric droplets.
by topological reasons. The ring provides transition Bouligand and Livolant [30] have found numerous
between the initial state with a pair of isolated hedgehogs biopolymers forming `Dirac monopole’ defects discussed
and N1+N2=1+1=2 and the ® nal state with one above. One might hope that liquid crystal dispersions
hedgehog and N =1. The contact area of two droplets would be helpful as the simplest models for deciphering
would grow only if the elastic penalty ~Ka becomes some properties of biological systems; note that the size
smaller than the surface energy gain ~s0 a

2, i.e. when of biological unit blocks, the cells, is of the order of
a >K /s0 . The energy barrier of coalescence is ~K

2
/s0 . 1± 10 microns. However, the analogy between the liquid

With K ~10 Õ
11 N and low s0~10 Õ

4 J m Õ
2 , the crystal dispersions and p̀roto-organisms’ remains quite

energy barrier is high, ~10 Õ
18 J, as compared with the remote: a p̀roto-organism’ should participate in the

thermal energy ~4 Ö 10 Õ
21 J at room temperature. Thus dissipation of energy; it must be s̀emipermeable’ to allow

the nematic droplets are much more stable against the ¯ ux of energy and of some selected forms of matter;
coagulation compared with their isotropic counterparts there should be also some mechanism of division accom-
with no bulk elasticity. panying growth to keep the surface-to-volume ratio

relatively low and thus to facilitate the interchange of
7. Conclusion energy and matter with the surrounding matrix. Although

The phenomenon of surface anchoring leads to the liquid crystal droplets can possess non-trivial
important consequences, e.g. equilibrium defect struc- inner structures and a non-spherical shape, they usually
tures in liquid crystal dispersions. These defects are preserve their cohesiveness because of the positiveness
controlled by general topological laws and are similar of the surface-tension coeYcient. Quite surprisingly,
to structures in other ® elds, such as magnetic monopoles there is an exception: spontaneous division of chiral
or boojums in super¯ uids. The defects greatly in¯ uence liquid crystal droplets has been observed during a
not only individual, but also cooperative properties of speci® c sequence of phase transitions during temperature
droplets. Studies of these cooperative phenomena are decrease [31]. This phenomenon illustrates another
currently being performed on emulsions in which isotropic unusual feature of liquid crystal dispersions that cannot
droplets are surrounded by a nematic medium [24]. be found in their isotropic counterparts.
Here again the defects appear in the liquid crystalline Anchoring phenomena at the liquid crystal± isotropic
matrix as a consequence of the anchoring phenomenon ¯ uid interface per se are practically unexplored. Here
and topological constraints considered above. For one might expect orientational analogues of electro-
example, for normal anchoring, each suYciently large capillarity, i.e. the dependence of the anchoring energy
isotropic droplet or ball immersed in the liquid crystal and èasy orientations’ on the concentration of ions
matrix is topologically equivalent to a point hedgehog, or surfactants. Finally, both the con® nement and the
and brings the topological charge N =1 that must be presence of defects make it necessary to explore the role
compensated by a defect in the nematic matrix. of the so-called divergence elasticity of liquid crystals.
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